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Abstract-A quasi-analytical finite element procedure is developed which can obtain the frequency and
buckling eigenvalues of prestressed rotating anisotropic shells of revolution. In addition to the usual
centrifugal forces, the rotation effects treated also include the contribution of Coriolis forces. Furthermore,
since a nonlinear version of Novoshilov's shell theory is employed to develop the element formulation, the
effects of moderately large prestress deflection states can be handled. Due to the generality of solution
procedure developed, the axisymmetric prestress states treated can also consist of torque loads. In order to
illustrate the procedures capabilities, as well as the significant effects of Coriolis forces, torque prestress and
material anisotropy, several numerical experiments are presented.

INTRODUCTION

The problem of free vibrations and buckling of shells under the influence of prestress fields has
stimulated considerable attention. Numerous recent numerical investigations have taken advan
tage of the capacities of current generation computers to analyze more accurate models of shell
structures. For shells of revolution as well as more general geometries, such investigations have
reached a high level of generality as witnessed in the mature works of references [1-6].

In spite of the comprehensive capabilities of presently available finite element schemes for
shells of revolution, the quasi-analytical formulations still have several important shortcomings
outstanding. For instance, the prestressed free vibration and buckling versions are as yet limited
to orthotropic stationary shells subject to torsionless prestress states. Hence, the important
effects of material anisotropy [7-9], torque prestress[9-10] and Coriolis forces [9, 11-12] are
completely neglected. Furthermore, the problem of traveling flexural waves induced by moving
loads in prestressed structures has also been neglected from the computational point of view. The
critical velocity of such waves, which marks the transition from subcritical to supercritical wave
forms, is of importance for design purposes in several prestressed aerospace and commercial
structures (tires [13, 14] and turbines, etc.) and hence, needs further attention.

In the context of the foregoing, the present work will extend the quasi-analytical version of
the finite element procedure to handle free vibrations, critical circumferential traveling wave
velocities and stability problems of shells of revolution incorporating such effects as; (i) Coriolis
forces; (ii) axisymmetric torque prestress states and; (iii) material anisotropy. Since the effects of
moderate prestress deflections are considered, following the works of Cohen [2] and Bushnell [4],
a nonlinear version of Novoshilov's[15] shell theory will be used to set up the requisite
pertubational finite element formulation including the effects of (i-iii) noted above. As will be
seen later, due to the inclusion of (i-iii), the governing field equations take on a noncanonical
form which prevents the usage of the classical quasi-analytical procedures employed by[l-4].
For the present work, this difficulty is circumvented in the manner of[16]. Since this procedure
leads to a complex regular polynomial matrix problem, the complex eigenvalue procedure
developed by Gupta[I7] can be used to obtain the requisite eigenvalues. For the stability
problem, complex versions of the eigenvalue procedures employed by Bushnell [4], and
Cohen [2] are discussed. In order to establish the requisite eigenvalue problem for the critical
circumferential traveling wave velocities, the Galilean coordinate shift [18] is used to transform
the governing equations of motion into the appropriate standing wave problem. After finite
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element modelling, the resulting eigenvalue problem is complex, hence, the procedure of
Gupta[17] is also used to evaluate the critical wave speeds.

In the sections to follow, discussions are given on; (1) governing shell theory employed; (2)
pertubational finite element approximation; (3) perturbational finite element field equations; (4)
critical circumferential traveling wave eigenvalue problem; (5) eigenfunction and eigenvalue
properties and; (6) discussion of results. In order to illustrate the potential of the quasi-analytical
finite element procedure derived herein, as well as the importance of items (i-iii), several
numerical experiments are also included. These will give comparisons with the works of previous
investigators.

2. GOVERNING SHELL THEORY

As noted in the introduction, the shell formulation adopted herein is a nonlinear version of
Novoshilov's theory [15]. For the general case of shells composed of heterogeneous anisotropic
composite media, the requisite constitutive law takes the form

{a}=[D]{E}
such that

and the material stiffness matrix [D] is defined by

All A 12 A l3 B II Bl2 B"
A 22 A 23 B I2 Bn B23

[D] = A 33 B I3 B23 B"
DIl D 12 D"

Symmetrical D22 D23

D"

where the individual elements of [D] are given by

(Aah Bab, Dab) = (Eab(l, Z, z2»; a, b = 1,2

(Aa3 , Ba3 , Dd = (Ea 4(1, z, Z2»; a = 1,2

(A 33 , B 33 , D33) = (E44(1, z, Z2»

with

( ) = fh ()dz

(I)

(2)

(3)

(4)

(5)

(6)

The Eab elements appearing in eqn (5) represent the actual 3-D material stiffnesses. Following
Novoshilov's shell resultant convention, Tl2 and M12 appearing in eqn (2) are defined by

Tl2 = T l2 - MdR2 = T21 - MnlR J

!VI 12 = (M 12 + M21 )/2 (7)

As moderately large deformations are assumed, in order to establish the requisite stability and
vibration equations, {E} is taken as

E, el X ~ 0
E2 e2 0 ~ ~J

[nE3 el2 +(1/2) !/J 0 X (8)
E4 Kl 0 0 0
E, K2 0 0 0
E6 1<12 0 0 0
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such that eJ, • •• and KJ, • •• have the form

{
et} { (r/Rz)f + r'Tj' }
ez = (1/r)(v'+1])
el2 nRz+(r'/r)r"+v'-r'/(rRt)v
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(9)

(10)

(11)

The displacement components g and 1] appearing in eqns (9)-(11) are the global counterparts
(Fig. 1) of u and w as defined by the relation

(12)

n

z

R,

AXIS OFREVOLUTION

Fig. 1. Axial section of shell of revolution.

3. PERTURBATIONAL FINITE ELEMENT APPROXIMATIONS

As was pointed out recently by[16], the appearance of the A 13 , A Z3 , B 13, BZ3 and D13 , Dn

elements of the material stiffness matrix for the anisotropic case results in a noncanonical form
for the governing field equations and therefore prevents the traditional[I-4] application of
Fourier decomposition. Interestingly, this same difficulty is also caused by the allowance of
axisymmetric torque prestress fields for both stability and free vibration analyses [8]. For this
reason, previous stability and free vibration procedures have been restricted to axisymmetric
torsionless prestress fields which admit the traditional usage of Fourier decomposition [8, 9,16].

As the stability and free vibration properties of small perturbations about the general
axisymmetric prestress fields of rotating anisotropic shells are sought, the displacements g, 1] and
v are taken in the form

{

g(S, 8, O}
{Y(s,8,t)}= Tj(S.,8,O ={Yo(s)}+{Yp (s,8,t)}

v(s, 8,° (13)

In order to circumvent the difficulties noted earlier, the exact removal of the 8 variable from the
governing field equations is obtained by seeking {Yp } in the form[16]

such that j = V(l) and

=

{Yp } = 2: {Ymp } elm. (14)

(15)
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Now, in terms of eqns (13) and (14), {Y} at any point within the eth element can be approximated
by

00

{YY ~ [NJ'{Yol' + 2: [NmJ'{Ympl' ejm8

where the shape functions [N]' and [Nm r have the following partitioned forms:

[Nr = [N, [I], ...r

The nodal displacements {YoY and {YmpY appearing in eqn (16) are defined by

(16)

(17)

(18)

(19)

(20)

such that ~mp;, 'TJmp;' ... represent the complex perturbational nodal displacements and i, k, ...
denote the nodes associated with the eth element.

In terms of eqn (16), assuming that II{ Yp }II ~ 1for all SES, the shell strain relations, eqns (3) and
(8)-(11), can be rewritten as

00

{e}'~{Eol'+ 2: [[Bmp]+[Bon][Gmp]]'{YmpYejm6

00

+(1/2) 2: 2: [BmPn]'[GMP]'{YMPYei(m+MJ6 (21)
m=-OO M=~<Xl

where the coefficients matrices [Bon]', [Bmpr, [Gmpr and [Bmpn]' have the following partitioned
forms:

[X'
0 1/10 0 0 n([Bon]')T = ~o f30 0 0 0 (22)

1/10 XO 0 0

[Bmp ]' = [Bmp;, Bmpk, ...r (23)

[Gmp]' = [Gmp;, Gmpk, ...r (24)

[ Xrn, 0 I/Imp 0 0

~]([Bmpnrf =f3~p f3mp 0 0 0 (25)
I/Imp Xmp 0 0

For convenience, the various partitions making up eqns (22)-(25) are given in the appendix. Due
to the use of the complex form of Fourier series, namely eqn (14), the various partitions of [Bmp ]'
[Gmp ]', [Bmpn ]' and {Ymp Y satisfy the following conjugate property, namely,

such that the overbar denotes complex conjugation. Since material anisotropy and torque
prestress are admitted herein, the present description of {E} includes such prestress field variables
as f3o, 1/10 and Vo which are neglected in traditional orthotropic torsionless formulations. These
effects are represented in the various partitions of [Bon], [Bmpn ] and [Gmp ] as given in the
Appendix.

4. PERTURBATIONAL FINITE ELEMENT FIELD EQUATIONS

Since the present work considers the analysis of a conservative holonomic gyroscopic
system, the effects of Coriolis forces as well as torque prestress and material anisotropy are
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admitted. Hence, accounting for the moving frame of reference, the usual virtual work
expression takes the following more general form, namely,

where the various mass matrices [ad; i = 1, 2, 3 appearing in eqn (27) are given by

(28)

(29)

such that

[0,] = 2[ -;
r'

+J0
- r/R2

[-V)' 0 rr'IR,J
[as] = 0 -1

(r/~2)2rr'/R2 0

["R'
r'

!J[H] = _Or' 0
r/R2

(30)

(31)

(32)

and n is the rotational speed of the shell. Unlike [ad which is positive definite, [ad; i = 2, 3 have
indefinite quadratic forms.

In terms of eqn (21), 5{eY appearing in eqn (27) is given by

5{eY - m~~ {[[Bon] [Gmp ] + [Bmp ]]"5{Ymp y eim9 + M~~ [BMPnnGmp]"5{Ympy eHm+MJ9}

(33)

Hence assuming that II{Ymp}11 ~ 1 for seS, it follows that
~ ~

(5{e}')T{uY - L L (5{YMP }')T {[GMP]T[Bmpn]T[D] {eo} + [[BMP]T
m=-OOM=-OD

where {eo} represents the initial prestress strain field. By letting {uo} represent the prestress state,
the expression [Bmpnr[D] {eo} can be rewritten as follows

where

(35)

o
TlO + T20

o
(36)

Therefore applying (35), (34) reduces to
~ ~

(5{e}')T{uY - L L (5{YMP }")T[[GMP ]T[a(OJ] [Gmp] + [[BMPr + [GMP]T[Bon]T] [D]
m=-ooM=-oo
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Now, performing the appropriate variational manipulations, in terms of (37), (27) yields the
following finite element formulation

such that

[Kmr = r [[Gmpf[O"(O)] [Gmp ]+ [[Bmp]T + [Gmpr[Bon]T] [D] [[Bmp ]+ [Bon] [Gmp]]]erdsJs,
(39)

and

(40)

For situations in which the initial prestress state is accompanied by small deflections, namely
1[{Yo}11 <;; 1 for SfS, the form of (39) can be simplified to yield

(41)

Unlike previous quasi-analytical developments, [0"(0)] represents the most general form of
axisymmetric prestress field admissible. Furthermore, this is true regardless of whether moderate
or small deflections are assumed.

Due to the symmetric and conjugate properties of [Gmpr [Bmpr, [0"(0)] and [Dr, it follows
that [Km r is itself Hermitian in form, that is

(42)

Furthermore, due to (26),

(43)

This is true for both forms of [Kmr, namely that given by eqn (39) and that by eqn (41). Similarly,
since [ell] is skew symmetric and [a3] is symmetric, it follows that [Mm2] is Hermitian while for
purely real [Nm ], [Mmtl and [Mm3 ] are both real and symmetric.

For the free vibration problem information concerning the properties of harmonic type
oscillations is sought. Due to the appearance of even and odd ordered time derivatives in eqn (38),
it follows that for the nonstationary case, {Ymp}' must be taken in the form

(44)

Hence, in terms of eqn (44), eqn (38) reduces to the following assembled complex regular matrix
problem, namely

(45)

For the nonstationary isotropic and orthotropic cases, it follows from eqn (45) that

(46)

In the more general fully anisotropic torque prestress case, because of the use of eqn (14), the
transformed nodal displacements {fmp} satisfy the following complex conjugate properties

(47)

such that jWm = - jw-m • Due to eqn (45) and (47), the eigenfunction associated with a given
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frequency eigenvalue is given by

1373

{Yp} = {rmp(jWm)} exp (j(m8 +wmt)) +{f'mp(jWm )} exp (-j(m8 +wmt))

+{rmp(-jwm)} exp (j(m8 - wmt)) +{f'mp(-jWm)} exp (-j(m8 - wmt)) (48)

such that for stationary shells

(49)

For the stability problem, eqn (38) reduces to:
(i) Moderate prestress deflections;

Is [[amp ]T[U<Ol] Wmp] + [[Bmpf + [amp r[Bonf] [D] UBmp] + [Bon] [Gmp]]]rds{Ymp } = {O}

(50)

(ii) Small prestress deflections;

(51)

In terms of either eqns (50) or (51), the eigenfunctions associated with a given stability problem
take the form

(52)

4. CRITICAL CIRCUMFERENTIAL TRA VEUNG WAVE
EIGENVALUE PROBLEM

To establish the appropriate eigenvalue problem for the determination of the critical
circumferential wave velocities, the Galilean coordinate transformation[l8] is employed to
convert eqn (27) to standing wave form. Since traveling waves induced by circumferentially
moving surface tractions are considered, Fig. 2, the Galilean transform takes the form

1) '" 8 - O*t (53)

where 0* represents the rotational speed of the tractions Fz and Fe. In terms of eqn (53), eqn (27)
reduces to

Since 1)E(-00,00), in order to obtain the proper 1) functional dependence for Fz, Fe and the various

Fig. 2. Circumferentially moving surface tractions.
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other field variables, the following bilateral Fourier integral representation is employed

(55)

such that

(56)

Due to the inherent periodicity of the 1/ space, it follows that

Hence, following[l9], for all TIE (-00, x)

w

(Fz, F., {Yp}) = L (Fmz, Fm., {Ymp }) eim"

where

(57)

(58)

(59)

In terms of eqns (15), (54) and (58), the wave shape {yr associated with Fz and F. for the given
problem is taken in the form

oc

{yr ~ [NJ'{Yo}' + L [NmJ'{Ympr eim"
't1=~=

(60)

After the appropriate variational manipulations, eqn (54) reduces to the following complex linear
eigenvalue problem, namely

(61)

Comparing eqns (45) and (61), it follows that the critical velocities of the loads Fz and F. are
directly related to the frequency eigenvalues by the relation mO* = wm • Hence, there are an
infinity of circumferential critical velocities which interestingly are independent of the distribu
tional nature of the traveling surface tractions Fz and F. t. Furthermore, due to the general form
of eqn (61), the foregoing is true both for moderate and small initial prestress deflection fields.
The infinity of circumferential critical velocities noted above are in contrast with axially moving
forces, which are known to excite only a finite number of critical wave speeds [20] (cylindrical
shells), and which are not directly related to the frequency eigenvalues of the given structure.

5. EIGENFUNCTION AND EIGENVALUE PROPERTIES

Because of the inclusion of Coriolis forces, the pencil of (45) is a second order complex
regular polynomial matrix. In order to establish some of the outstanding eigenvalue properties of
the assembled counterpart of eqn (45), premultiplication by [fmp 1yields the following quadratic
form

(62)

Solving eqn (62) for W m yields the following generalized version of Rayleigh's quotient, namely

(63)

tSo long as F, and F. are moderate loads.
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where M~I, M~2 and K~ represent the following quadratic forms;

M~t = ({f'mp}{[Mmt]{fmp}

M~2 = O({f'mp}{[Mm2]{fmp}

K~ = ({f'mp}{[[Km]+02[Mm2]]{fmp}

1375

(64)

(65)

(66)

Since j[Mm2] is Hermitian, the quadratic form jO[f'mp] [Mm2] {fmp} is itself purely real. Hence,
for a positive discriminant, it follows from (63) that Coriolis forces induce a two fold bifurcation
of the frequency eigenvalue branches of general shells of revolution. Such bifurcations are about
the branches of the stationary case. Since [Km ] has not been specialized, this result applies both
for the moderate and small prestress deflection situations. For the stationary case (0 = 0), (63)
reduces to the more traditional form

Wm
2= [f'mp] Is [[Gmp]T[a(OI] [Gmp] + [[Bmpf + [Gmp]T[Bon]T][D]

x [[Bmp ]+ [Bon 1[Gmp ]]]rds{fmp}/({f'mp}{[Mmt]{fmp} (67)

A further implication of this result is that Coriolis forces also cause a two-fold bifurcation in the
total number of critical circumferential traveling wave velocities. This follows directly from
analyzing the Rayleigh quotient of eqn (61).

The gross effects of the various forms of [atOll, [Mm d. [Mm3l and [D] can be forecasted from
eqns (63) and (67) via the use of the classical Courant-Fischer theorem [21]. For example, for a
purely tensile prestress field [a (OIl is positive definite, hence via Courant-Fischer obviously all the
frequency eigenvalues are raised compared to the prestress free set. In the case of a shear type
prestress field, due to the indefiniteness of [atOll, the frequency eigenvalues may lie above and
below the prestress free case. This of course leads to the possibility of bifurcations in the
eigenvalue spectrum. Similar comments can also be made concerning the effects of [Mm2], [Mm3],
and the anisotropic elements of [D] which all have inherently indefinite quadratic forms.

In order to establish the orthogonality properties of {fmp}, assume that there exists distinct
eigenvalues (Wma, Wmb) which respectively satisfyt

[[Kml +02[Mm3] + jOwma [Mm2]- w~a[Mmd]{fmpa} = {O}

[[Km1+02[Mm3] + jOWmb [Mm2]- W~b[Mm t]]{fmPb} = {O}

(68a)

(68b)

Now subtracting the results of the premultiplication of (68a) by [f'mPb] yields the following
unusable form of orthogonality condition, namely

For the stationary case (0 == 0), eqn (69) reduces to the more traditional form

(70)

As with the generalized and specialized Rayleigh quotients, (63) and (67), the orthogonality
relations eqns (69) and (70) differ from those of the stationary, torsionless orthotropic case in that
[Kml, {fmp} etc. are intrinsically complex. This complexity is directly due to the effects of torque
prestress and Coriolis forces as well as material anisotropy. Hence, the deletion of any two of
these effects still leads to complex equations whose pencils are inherently Hermitian.

6. DISCU SSION

For the frequency eigenvalue problem [Km] is inherently Hermitian.:!: Thus, for 0 f;. 0, eqn
(45) represents a complex 2nd order regular polynomial matrix problem. Hence, eqn (45) can be

tConsider that the discrimiant of eqn (63) is positive definite.
*Ihis follows regardless of whether moderate or small deflection fields are considered.
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recast as the following complex linear eigenvalue problem [21], namely

(71)

Since the pencil of (71) is complex, the eigenvalue procedure recently developed by Gupta[l7]
can be used to evaluate wm • For stationary situations, eqn (45) degenerates to

(72)

for which Gupta's procedure must still be employed. This is due to the Hermitian nature of [Km ]

which is a direct outgrowth of the material anisotropy and torque prestress admitted herein.
In the case of stability problems, the eigenvalues of

(73)

can be found by the "plotting procedure" a la Almroth and Bushnell [22]. Here of course, in
contrast to[22], since [Km ] is Hermitian its determinant is a complex constant for inappropriate
eigenvalue parameters A. In general, in all the numerical experiments performed for this study,
Re(det[KmD and 1m (det[Km ]) approach zero simultaneously for the appropriate A. Hence, for
simplicity, the "plotting" procedure can be employed by monitoring only Re(det[Km]).
Alternatively, the iterative technique developed by Cohen[2], and subsequently employed by
Bushnell [4], can be generalized for use here. Such a procedure involves a sequence of eigenvalue
problems that converges to the actual load state for which det[Km ] = O. A typical eigenvalue
problem in the sequence is

where Ak is the kth correction of the kth load state, namely

(75)

In terms of (75), the iteration procedure is continued until Ak reaches some preassigned limit. The
main difference here is that [Km ] is inherently Hermitian rather than real and asymmetric as in
traditional analyses employed for orthotropic stationary shells subject to torsionless prestress
states.

As noted earlier, because of the use of complex series expansions, namely eqn (16), the
intraelement and nodal displacements are inherently complex, such that the transformed fields
must satisfy the conjugate properties noted by eqn (26). In order to retain the demonstrated
capabilities of the shape functions used in previous axisymmetric analyses, for this study, [N] are
chosen as real functions of the meriodional variable s such that the actual functional families
used are identical to those employed in previous orthotropic studies. In terms of such a
development, the entire complexity therefore resides in the transformed nodal displacements
{Ymp }, wherein Re({Ymp }) and Im({Ymp }) are coupled due to Coriolis, anisotropy and torque
prestress effects.

To illustrate the potential of the quasi-analytical finite element procedure developed herein,
the results of several numerical experiments are presented in this section:

(i) Torque buckling of isotropic cylinders. Donnell's early approximate solution for torque
buckling of cylinders has been improved by several investigations. Of these, the most accurate
available solutions were reported by Yamaki and Kodama[23] and Budiansky[24]. Figure 3
presents a comparison of results on cylinder torque buckling for a wide range of shell geometries
and for the freely and clamped supported cases. The element type used to perform the numerical
calculations had the form of the usual straight line variety with the exception that, as noted
earlier, the nodal displacements were treated as complex. Furthermore in keeping with traditional
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CD FREELY SUPPORTED
®CLAMPED

10
3 -- REFS.(23, 24)

o PRESENT
E=3xldpSI
'1=.3
2

Fig. 3. Torsional buckling of isotropic cylinders.

torque buckling procedures, the prestress field was considered as a purely membrane state.
Although, a "small" word size IBM 370-155 was employed to perform most of the computations,
good accuracy was achieved over most of the range of variables considered. For O"~~ - 0
(O"X6 crit.), a strong coupling between Re({Ymp }) and Im({Ymp }) was revealed. This coupling
resulted in the spiraling mode shape typical of torque buckling.

(ii) Stability of prestress anisotropic cylinders. Figures 4 and 5 present a comparison of results
for an anisotropic sandwich cylinder subject to torque or radial prestress. As in (i), the element
type used to obtain the numerical results consisted of the straight line variety. For both the
stability problems considered, as in traditional treatments, the prestress fields were considered as
linear membrane states. In addition to illustrating the essential agreement between the
"exact" [25] and element generated results, the significant effects of material and constructional
anisotropy are also revealed. Furthermore, similar to the torque prestress case treated in (i),
anisotropy induced a strong coupling between Re({Ymp }) and 1m ({Ymp}) which also resulted in a
spiraling type mode shape.

(iii) Torque prestress and Coriolis effects on frequency and critical circumferential wave
velocity spectrums of damped rotating cylinders. The comparison illustrated in Fig. (6) considers

"h=KThEIl
Ez,=.045E11

M12FD=2xlcY
- REF(25)

o PRESENT

-3
10

I (L/R) 10

Fig. 4. Buckling of clamped anisotropic sandwiched cylindrical shells subject to torque.

Fig. 5. Buckling of freely supported anisotropic sandwiched cylindrical shell subject to external pressure.
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150

100
~
~

J
50

1800 " fl(RPM)

Fig. 6. Effects of rotational speed on frequency eigenvalues of torque prestress clamped cylinder.

the effects of torque prestress and Coriolis forces on the frequency eigenvalues of rotating
cylinders. The exact results presented in these figures for comparison purposes were obtained by
employing the analytical procedure recently described in [9]. Since the numerical results
presented in[9] were restricted to the infinite case, in order to reveal the effects of torque
prestress and Coriolis forces on cylinders with end contraints, this work considers clamped
boundaries. As in the infinite case, for clamped boundaries significant bifurcations in the
frequency eigenvalue spectrum continue to be induced by Coriolis forces. By interpreting W m

appropriately, Fig. 6 can also be used to glean information concerning the effects of f! and T on
f!*.

2 PLY
l.AMINATION

P:I,2SATM

~14

~J ..
393
S,6z"--";

"1.5'
PLY

ORIENTATION

Fig. 7. Geometry of laminated toroidal configuration.

•
/

/
RADIAL

I

l'TRANSVERSE

/ --F£F(26)
/ • PRESENT

....- ----- REF(26)
• PRESENT

2 M 4

Fig. 8. Frequency eigenvalues of pressurized freely supported laminated toriodal configuration (Fig. 7).
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(iv) Frequency eigenvalues of a pressurized laminated toriodal shell configuration. Considering
the tire like reinforced rubber shell configuration described in Fig. 7, Fig. 8 presents a comparison
of element and experimentally generated results [26]. The shape function used for this study
consisted of the Giannini and Miles [27] curved element approximation. Although adequate
representation was obtained, the main difference in the results presented can be attributed to the
lack of adequate material characterization [26] and shell geometry description.

SUMMARY

The capabilities of the quasi-analytical finite element procedure for shells of revolution has
been extended to handle free vibration and stability problems incorporating:

(i) Coriolis acceleration loads;
(ii) General axisymmetric prestress states including torque loads;

(iii) Material and/or structurally induced anisotropy.

Because of the form of the solution procedure employed herein, several presently available
general and special purpose finite element computer codes (SAP, etc.) can be updated to in
clude such capabilities. Furthermore, due to the inherent generality of the solution form
employed, the finite difference approach of Bushnell[4], (BOSOR series codes), can also be
updated to incorporate the above noted effects.
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